الفراشة أصبح فتيات Ftayat.com : يتم تحديث الموقع الآن ولذلك تم غلق النشر والمشاركات لحين الانتهاء من اتمام التحديث
ترقبوا التحديث الجديد مزايا عديدة وخيارات تفاعلية سهلة وسريعه.
فتيات اكبر موقع وتطبيق نسائي في الخليج والوطن العربي يغطي كافة المجالات و المواضيع النسائية مثل الازياء وصفات الطبخ و الديكور و انظمة الحمية و الدايت و المكياج و العناية بالشعر والبشرة وكل ما يتعلق بصحة المرأة.
وعليكم السلام ورحمة الله
تفضلي اختي
الرياضيات من العلوم الهامة والتي لا يستغني عنها أي فرد مهما كانت ثقافته او كان عمره بعد عمر التمييز لا نها تشغل حيزا مهما في الحياة مهما كانت درجة رقيها.
فالرياضيات في المجتمع تاخذ اهميتها النسبيه من مجتمع لاخر تبعاً لتقدم هذا المجتمع وتعقد حياته التي تحتاج الى وسيلة لكثير من الامور كالقياس والترتيب وبيان الكميات والمقادير والازمان والمسافات والحجوم والاوزان والاموال وغيرها.
واول علوم الرياضيات ظهورا ما يمكن ان نطلق عليه الحساب وهذا العلم استخدمته الحضارات المختلفة في حياتها ومن بين تلك الحضارات الحضارة الاسلامية التي كان لعلم الحساب اثر واضح في تجارة المسلمين اليومية واحكامهم الشرعية ومن ذلك عدم الزيادة والنقصان في كثير من المعاملات لا يعرف ذلك الا بالحساب ومن ذلك معرفة الربا ومقداره لان كل زيادة على اصل المال من غير تبايع فهي ربا.
ومن علوم الرياضيات والتي نبغ فيها المسلمون علم الجبر والذي يحتاجه الناس في معاملاتهم ومن ذلك معرفة المواريث المعروف بعلم الفرائض ولا يعرف حل مسائل المواريث الا بالرياضيات .
والامر لا يقف عند التجارة والمواريث والربا وغير ذلك بل ان تحديد اوقات الصلاة التي تختلف حسب المواقع ومن يوم الى اخر يحتاج الى الحساب الذي يحتاج الى معرفة الموقع الجغرافي وحركة الشمس في البروج واحوال الشفق الاساسية كل ذلك بالحساب يمكن تحديد وقت الصلاة في كل بلد
ان معرفة جهة القبلة والاهله وبخاصة هلال رمضان يحتاج الى حسابات خاصة وطرق متناهية في الدقة ولا يتاتي ذلك الا بالرياضيات وقد فاق المسلمون اقرانهم من الهنود واليونان في معرفة كل ما يتعلق بالشهور ومطالع الاهلة
ونظرا لحاجة المسلمين للحسابات الدقيقة والمتعلقة بالامور الدينية من عبادات وغيرها شجع الخلفاء ومنهم الخليفة العباسي ابو جعفر المنصور المترجمين والعلماء على الاهتمام بعلم الفلك وخصص اعتمادات كبيرة من المال للعناية بذلك لمعرفة البروج وعروض البلدان وحركة الشمس والانقلابان الربيعي والخريفي والليل والنهار وحركات القمر وحسابها والخسوف والكسوف والنجوم الثابته والكواكب المتحركة
وتشمل الرياضيات فرع هام وهو حساب المثلثات الوثيق الصلة بالجبر الذي اخذه الاوربيون عن المسلمين وتظهر اهمية الرياضيات وعلم المثلثات بصورة خاصة في قياس المساحات الكبيرة والمسافات الطويله بطريقة غير مباشرة كقياس ارتفاع جبل او البعد بين جبلين او عرض نهر وغيرها حتى قياس طول السنة الشمسية يعرف برصد ارتفاع الشمس
والرياضيات لها اهمية في حياة المجتمع بمعرفة الحجوم وحساب الكميات وغيره فالهندسة علم مهم يدرس الحجم والمساحة وهو فرع من فروع الرياضيات التي تتعامل مع النقطة والخط والسطح والفضاء
مما سبق يمكن القول ان الرياضيات بكل فروعها لها اهمية في حياة المجتمع اليومية وتصريف وتنظيم امور معاشهم وحل ما يقع بينهم من امور تحتاج للحساب وتحديد ما لهم وما عليهم من امور مادية
كما ان الرياضيات مهمه في تسهيل امور المجتمع في عباداتهم وتحديد ما عليهم من واجبات مالية ويظهر ذلك في تحديد الزكاه وغيرها
كما ان الرياضيات مهمة في معرفة المساحات والحجوم والمقادير والابعاد وغيرها
فالرياضيات علم لا يستغنى عنه في الحياة بل نستطيع القول ان الرياضيات سهلت الحياة في كثير من جوانبها ونغصت الحياة لانها كانت ايضا سببا في اختراع كثير من ادوات الدمار فالرياضيات سلاح ذو حدين في الحياة
تاريخ الرياضيات
كان الكتبة البابليون منذ 3000سنة يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية ببابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من 60 رمزا للدلالة علي الأعداد من 1-60. وما زال النظام الستيني متبعا حتي الآن في قياس الزوايا في حساب المثلثات وقباس الزمن (الساعة =60 دقيقة والدقيقة =60ثانية ). طور قدماء المصريين هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري وهو العد بالآحاد والعشرات والمئات. لكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 500بوضع 5رموز يعبر كل رمز علي 100.
وأول العلوم الرياضية التي ظهرت قديما كانت الهندسة لقياس الأرض وحساب المثلثات لقياس الزوايا والميول في البناء. وكان البابليون يستعملونه في التنبؤ بمواعيد الكسوف للشمس والخسوف للقمر. وهذه المواعيد كانت مرتبطة بعباداتهم. وكان قدماء المصريون يستخدمونه في بناء المعابد وتحديد زوايا الأهرامات. وكانوا يستخدمون الكسور وتحديد مساحة الدائرة بالتقريب.
الرياضيات عند الإغريق
قام الإغريق بعدما نقلوا الرياضيات الفرعونية إستطاع تاليس (طاليس) في القرن السابع ق.م. أن يجعل الرياضيات نظريات بحتة حيث بين أن قطر الدائرة يقسمها لنصفين متساويين في المساحة والمثلث المتساوي الضلعين به زاويتين متساويتين. وتوصل بعده فيثاغورث إلى أن في المثلث مربع ضلعي الزاوية القائمة يساوي مربع الوتر. وفي الإسكندرية ظهر إقليدس بالقرن الثالث ق.م. و وضع أسس الهندسة التي عرفت بالإقليدية والتي مازالت نظرياتهاتتبع اليوم. ثم ظهر أرخميدس (287 ق.م. – 212ق.م. ) باليونان حيث عين الكثافة النوعية .
لم يضف الرومان جديدا على الرياضيات بعد الإغريق .
الرياضيات الهندية
في بلاد الشرق نجد الهنود قد إبتكروا الأرقام العربية التي نستعملها حتي اليوم وقد أخذها العرب عنهم وأطلقوا عليها علم الخانات. وكان الهنود فيه يستعملون الأعداد العشرية من 1-9 واضافوا لها الصفر, وهذا العلم نقلته أوربا عن المسلمين.
الرياضيات عند المسلمين
في
] الكتاب الأعظم في الحساب .والكتاب دائرة معارف في علم الفلك والرياضيات. وقد أفاد منه علماء المسلمين وصححوا بعض معلوماته وأضافوا إليه. وعن الهندية، ترجمت أعمال كثيرة مثل الكتاب الهندي المشهور في علم الفلك والرياضيات، سد هانتاSiddhanta أي " المعرفة والعلم والمذهب ". وقد ظهرت الترجمة العربية في عهد أبي جعفر المنصور بعنوان "السند هند.ومع كتاب "السند هند" دخل علم الحساب الهندي بأرقامه المعروفة في العربية بالأرقام الهندية فقد تطور على أثرها علم العدد عند العرب، وأضاف المسلمون نظام الصفرمما جعل الرياضيين العرب يحلون الكثير من المعادلات الرياضية من مختلف الدرجات، فقد سهل استعماله لجميع أعمال الحساب، وخلص نظام الترقيم من التعقيد، ولقد أدى استعمال الصفر في العمليات الحسابية إلى اكتشاف الكسر العشري الذي ورد في كتاب مفتاح الحساب للعالم الرياضى جمشيد بن محمود غياث الدين الكاشي (ت 840 ه1436 م)، وكان هذا الكشف المقدمة الحقيقية للدراسات والعمليات الحسابية المتناهية في الصغر. و استخرج إبراهيم الفزاري جدولاً حسابياً فلكياً يبين مواقع النجوم وحساب حركاتها وهو ما عرف بالزيج . وفي بغداد أسس الخزارزمي علم الجبر والمقابلة في أوائل القرن التاسع . . وكان من علماء بيت الحكمة ببعداد محمد بن موسى الخوارزمي (ت 232 ه846 م) " الذي عهد إليه المأمون بوضع كتاب في علم الجبر، فوضع كتابه " المختصر في حساب الجبر والمقابلة وهذا الكتاب هو الذي أدى إلى وضع لفظ الجبر وإعطائه مدلوله الحالي. قال ابن خلدون: "علم الجبر والمقابلة (أي المعادلة) من فروع علوم العدد، وهو صناعة يستخرج بها العدد المجهول من العدد المعلوم إذا كان بينهما صلة تقتضي ذلك فيقابل بعضها بعضاً، ويجبر ما فيها من الكسر حتى يصير صحيحاً". فالجبر علم عربي سماه العرب بلفظ من لغتهم، و الخوارزمي هو الذي خلع عليه هذا الاسم الذي انتقل إلى اللغات الأوروبية بلفظه العربي ALGEBRA .و ترجم هذا الكتاب للاتينية في سنة 1135 م .وظل يدرس في جامعات أوربا حتى القرن 16 م. كما انتقلت الأرقام العربية إلى أوربا عن طريق ترجمات كتب الخوارزمي الذي أطلق عليه في اللاتينية "الجور تمي "ALGORISMO ثم عدل للجورزمو ALGORISMO للدلالة على نظام الأعداد وعلم الحساب والجبر وطريقة حل المسائل الحسابية وظهرت عبقرية "الخوارزمي " في " الزيج " أو الجدول الفلكي الذي صنعه وأطلق عليه اسم "السند هند الصغير،،وقد جامع فيه بين مذهب الهند، ومذهب الفرس، ومذهب بطليموس (مصر )، فاستحسنه أهل زمانه ذلك وانتفعوا به مدة طويلة فذاعت شهرته وصار لهذا الزيج أثر كبير في الشرق والغرب. وقد نقل الغرب العلوم الرياضية عن العرب وطوروها. وعرف حساب أباكوس: Abacus.أو أباكس.لوحة العد . وهي عبارة عن اطار وضعت به كرات للعد اليدوي. وكانت هذه اللوحة يستعملها الاغريق والمصر يون والرومان وبعض البلدان الأوربية قبل وصول الحساب العربي أوربا في القرن 13. وكان يجري من خلال لوحة العد الجمع والطرح والضرب والقسمة. ==
الرياضيات عند الحضارات الأمريكية القديمة
وفي حضارة المايا بالمكسيك عرف الحساب . وكان متطورا . فالوحدة نقطة والخمسة وحدات قضيب والعشرون هلال . وكانوا يتخذون اشكال الإنسان والحيوان كوحدات عددية .
تطور الرياضيات
وبناء على ما سبق فإن الرياضيات ظهرت بداية كحاجة للقيام بالحسابات في الاعمال التجارية، و لقياس المقادير، كالاطوال و المساحات، و لتوقع الاحداث الفلكية، يمكن اعتبار الحاجات الثلاث هذه البداية للاقسام العريضة الثلاث للرياضيات، و هي دراسة البنية، الفضاء، و التغير. ظهرت دراسة البنى مع ظهور الاعداد، و كانت بداية مع الاعداد الطبيعية و الاعداد الصحيحة و العمليات الحسابية عليها، ثم ادت الدراسات المعمقة على الاعداد الى ظهور نظرية الاعداد. كما ادى البحث عن طرق لحل المعادلات الى ظهور الجبر المجرد، ان الفكرة الفيزيائية الشعاع تم تعميمها الى الفضاءات الشعاعية و تمت دراستها في الجبر الخطي.
ظهرت دراسة الفضاء مع الهندسة، وبدأت مع الهندسة الاقليدية و علم المثلثات، في الفضائين ثنائي و ثلاثي البعد، ثم تم تعميم ذلك لاحقا الى علوم هندسية غير اقليدية، لتلعب دورا في النظرية النسبية العامة.
ان فهم و دراسة التغير في القيم القابلة للقياس هو ظاهرة عامة في العلوم الطبيعية، فظهر التحليل الرياضي كاداة مناسبة للقيام بهذه العمليات، حيث ان الفكرة العامة هي التعبير عن القيمة بتابع، و من ثم يمكن تحليل الكثير من الظواهر على اساس دراسة معدل تغير هذا التابع.
مع ظهور الحواسيب، ظهرت العديد من المفاهيم الرياضية الجديدة، كعلوم قابلية الحساب، تعقيد الحساب، نظرية المعلومات، و الخوارزميات. العديد من هذه المفاهيم هي حاليا جزء من علوم الحاسوب.
حقل اخر هام من حقول لرياضيات هو الاحصاء، الذي يستخدم نظرية الاحتمال في وصف و تحليل و توقع سلوك الظواهر في مختلف العلوم، بينما يوفر التحليل الرياضي طرقا فعالة في القيام بالعديد من العمليات الحسابية على الحاسوب، مع اخذ اخطاء التقريب بالاعتبار
الف شكر للغاليه سفيرة الغد على المساعده القيمة
وأحب ان اضيف عن تطور الرياضيات >>>>>>>>>
الرياضيات
مقدمة : ما المقصود بالرياضيات ؟
إن الرياضيات تعد أم العلوم ، ولمعرفة موضوع علم الرياضيات ومنهجه يجب التطرق إلى تاريخه ، وهذا سيساعدنا على اكتساب رؤية واضحة على منهج ومبادئ ونتائج الرياضيات وبالتالي اكتشاف الآليات التي تحكم سير وتطور هذا العلم ، ومعرفة العوائق التي اعترضت تطوره .
فهل ظلت الرياضيات ومنهجها هي نفسها لم يتغير طوال تاريخها؟
المرحلة الإجرائية أو العملية :
قبل اليونان كانت الرياضيات شديدة الارتباط بالواقع العملي والحسي وبالممارسة اليومية للإنسان وبحاجاته . وتعتبر هذه المرحلة جنينيه للرياضيات .
الرياضيات الكلاسيكية مع اليونان
لقد تحقق وعي مع اليونان بالعمليات الحسابية والهندسية في شكلها المجرد واهتموا بها كثيرا . وما يميز هذه المرحلة هو امتزاج هذا الاهتمام ببعض التصورات الميتافيزيقية والخرافية الأسطورية كظهور رموز غريبة مثل : مع الفيتاغورثيين ، مما أدَّى إلى ظهور نتائج غير منتظرة وغير مألوفة . وكون الرياضيات ارتبطت في هذه الحقبة بالمحسوس والعملي بالإضافة إلى الامتزاج المذكور سالفاً ، كل هذا كان بمثابة عائق أمام تقدم الرياضيات . وكان لابد لتقدم هذا العلم من تجاوز الارتباط بالمحسوس وتجاوز التصورات التي تعطي للكائنات الرياضية كالأعداد والأشكال الهندسية مثلاً وجوداً مستقلاً عن ذهن الإنسان ( تصور أفلاطون ) .
ويعتبر إقليدس العالم اليوناني الذي استطاع أن يجمع شتات ما تم إنجازه في مجال الرياضيات عند اليونان وأسس عليه نسقاً هندسياً سمي بالهندسة الإقليدية . ويتأسس البرهان الرياضي عند إقليدس على :
أ -) التعريفات : هي التي يتم بواسطتها وضع و تحديد المفاهيم والتصورات الأولية التي تشكل المادة الخام لدراسة الرياضيات .
ب -) المسلَّمات : وهي القضايا التي يفترضها العالم ويضعها كأساس ينطلق منه في عملية البرهنة دون أن يقيم عليها برهاناً
ج -) البديهيات : وهي القضايا الواضحة التي تستمد صدقها من ذاتها ولا تحتاج إلى برهنة .
3_) الهندسة الإقليدية و ظهور الهندسات اللاإقليدية :
كان ينظر إلى هندسة إقليدس وإلى نتائجها على أنها صادقة صدقا مطلقا ,
وأنها الهندسة الوحيدة الممكنة. إلا أن كون المسلمة الخامسة لإقليدس والتي تقول :"من نقطة خارج خط مستقيم لا يمر إلا خط مستقيم وحيد يوازيه" كون هذه المسلمة لم تتم البرهنة عليها منذ البداية جعلها توضع موضع شك من طرف العلماء .
وعندما حاول كل من ريمان ( الألماني ) ولوبتشفسكي ( الروسي ) البرهنة على هذه المسلمة ، خلص كل منهما إلى هندسة أخرى تختلف عن هندسة الآخر وعن هندسة إقليدس . وسميت هذه الهندسات بالهندسات اللاإقليدية .
وظهور هذه الهندسات كان له دور أساسي في توجيه أول ضربة لليقين المطلق لمبادئ ونتائج البرهان الاستنتاجي في الرياضيات
4 -) أزمة الأسس في الرياضيات
إن أزمة اليقين الرياضي التي نتجت عن ظهور هندسيات لاإقليدية مسَّت أيضا المنهج الاستنتاجي الذي اعتمدته الرياضيات حتى النصف الأول من القرن التاسع عشر وهذه الأزمة مسَّت مجالات أخرى في الرياضيات كالجبر ، ففي إطار نظرية المجموعات ظهر أن البديهية الكل اكبر من الجزء ليست صادقة صدقا مطلقا كما كان يعتقد،إذ ظهر أن الجزء يمكن أن يكون مساوياً للكل أو أن يكون اكبر من الكل .
كما ظهرت كذلك بعض الأعداد الخيالية ( ت )والتي أدت إليها بعض المعادلات وهذا كله أدى إلى ظهور منهج جديد في الرياضيات هو المنهج الفرضي الاستنتاجي .
5 -) المنهج الفرضي الاستنتاجي
في هذا المنهج لم يعد ينظر إلى المبادئ والأسس التي يقوم عليها البرهان الرياضي على أنها صادقة أو غير صادقة ، بل أصبحت تعتبر فقط مجرد فرضيات تخضع لعدة شروط منها الوضوح وعدم إثارة الاختلاف وان تكون مستقلة عن بعضها البعض ، والتي يهم في النسق الاكسيومي الناتج عن هذه الفرضيات وهو طابع النظام والاتساق الداخلي المنطقي وخلوه من التناقض . ويكون صدق النتائج في المنهج الفرضي الاستنباطي صدقاً صورياً ، حيث أن الوصول إليها تم دون التناقض مع الأولويات التي تم الانطلاق منها .
أخواتي الفراشات أرجو منكم مساعدتي في البحث عن فستان يكون في غاية الروعه والأناقه من أجل بنتي الوحيدة لن عندي زواج أختي وأبغى فستان لها يكون حلو علما بأن عمرها 3سنوات
بليز أبغىردكم بأسرع وقت
تحياتي